Object Oriented Programming in Python

Alejandro Ribeiro

When developing Python code for data processing we eventually encounter
the need to use object oriented programming. There is nothing inherently
difficult about object oriented programming, except that it requires a some-
what convoluted thinking process. We illustrate the idea here with a simple
example.

1 Least Squares

We are given observation vectors y € R” and matrices A € R™*" and we
are asked to find the vector x € IR” that solves the least squares problem

1
x* = argmin - ||y — Ax||%. (1)
x 2
The solution to this problem is to make x* = (ATA)"!ATy, which we can
verify is true by taking the gradient of (1) and setting it to zero.

In order to solve least squares we write a function that takes A and y as
inputs, and computes the solution x* = (ATA) ATy which it returns as an
output:

import numpy as np

def 1s (A, y):

AT = np.transpose (A) # compute AT
ATA = np.matmul (A,AT) # Compute ATA
iATA = np.linalg.inv (ATA) # Compute (ATA)™!

iATAAT = np.matmul (AT, iATA) # Compute (ATA)7TAT



x = np.matmul (y, 1ATAAT) # Compute (ATA)flATy
return x

Once we have programmed this function we can use it to solve least squares
for any matrix-vector pair that we are given. For instance, consider a least
squares problem in which the number of columns of A is n = 3 and the
number of rows of A, which is also the number of columns of vy, is m = 13.
The entries of both are random, drawn from a Gaussian distribution with
zero mean and variance 1. The following code generates the matrix A and
the vector y according to this specification

13

=3

np.random.normal (0, 1, size=(n, m))
np.random.normal (0, 1, size=(1l, m))

<o BB
I

And we can solve the corresponding least squares problem by invoking the
function 1s:

x = 1ls (A, vy)

If we want to solve least squares for a different matrix and different vector,
we call the function 1s with different arguments:

AnotherA = np.random.normal (0, 1, size=(n, m))
Anothery = np.random.normal (0, 1, size=(1l, m))
x = ls(AnotherA, Anothery)

There is nothing wrong with using this approach to code the solution of
a least squares problem. But in data science circles developers are more
accustomed to object oriented programming. This requires that we create
objects that instantiate classes where we specify the operations that are to
be performed. This results in code that can look weird and complicated but
that, most argue, is easier to modify. And while it may look complicated, it
is not, in reality that much more complicated than just writing a function.



2 Classes: Attributes and Methods

The first concept to understand is that of a class. A class is an abstract entity
that contains atrtibutes and methods. We will see in the next section that ob-
jects are specific instantiations of a class. To solve the least squares problem
we introduced in the previous section using object oriented programming,
we define a class to store the matrix A and the vector y and create a method
in the class that solves the least squares problem:

import numpy as np
class LeastSquares () :
def _ _init_ (self, A, y):
self.A = A

self.y =y

def solve(self):
A = self.A

y = self.y

AT = np.transpose (A) # Compute AT

ATA = np.matmul (A, AT) # Compute ATA

iATA = np.linalg.inv (ATA) # Compute (ATA)71
iATAAT = np.matmul (AT, iATA) # Compute (ATA)71AT
X = np.matmul (y, iATAAT) # compute (ATA)"1ATy

return x

The class definition contains two methods. The method __init__ plays a
special role in the creation of objects which we will explain soon. At this
point, observe how it specifies the attributes that are part of the class. In
this specific example, the class contains two attributes, the matrix A and the
vector y. When we define a class, the __init__ function has to be speci-
fied always and self has to always be the first parameter of the __init__
method. This is Python syntax.

The other function, solve, is a function proper, which in object oriented
programming we call a method. This method returns the solution of the
least squares problem x associated with the matrix A and the vector y.
The matrix A and the vector y are not inputs to this function. They are
attributes that belong to the class. Further notice that self is the first
parameter of the evaluate method. Any method that is defined in a class

3



has to take self as the first parameter. This is just Python syntax as well.

3 Obijects: Concrete Instances of Abstract Classes

The class is an abstract entity with methods that specify how to manip-
ulate its attributes. If we want to actually process data, we create a spe-
cific instance. This is an object. For example, if we are interested in the
same least squares problem we consider in the first section, namely, a ran-
dom matrix and a random vector with Gaussian entries and dimensions
m = 13 and n = 3, we create the following object as an instance of the class
LeastSquares,

13

=3

np.random.normal (0, 1, size=(n, m))
= np.random.normal (0, 1, size=(1, m))
Sobject = LeastSquares (A, Vy)

0o o> B 3
Il

When creating the object LSobject we are implicitly calling the method
LeastSquares.__init__. In doing so we instantiate the attributes that
belong to the object. If we now want to implement the solution of a least
squares problem associated with this matrix and this vector we invoke the
method solve of the object LSobject

x = LSobject.solve ()

The creation of an object and the invocation of a method are slightly more
complicated than the single invocation of a function. But in the end the
difference is minimal.

Whenever the object LSobject is referenced in the code, we are referring
to the least squares problem associated with the specific matrix A and the
specific vector y that we passed during the creation of the object. If we
wanted to have a different least squares problem, we could do so by instan-
tiating another object of the LeastSquares class,

AnotherA = np.random.normal (0, 1, size=(n, m))



Anothery = np.random.normal (0, 1, size=(1l, m))
AnotherLSobject = ls.LeastSquares (AnotherA, Anothery)

If we now want to implement the solution of the least squares for this
matrix-vector pair we invoke the solve method of this specific object:

x = AnotherLSobject.solve ()

The main difference between the use of classes, as we do in this section,
and functions, as we did in the previous one, is one of frame of mind.
When writing functions, the parameters that we pass are separate from the
function. When writing a class, the parameters and the methods are integral
parts of the object. Thinking in terms of objects helps our human brains in
several ways. For example, having A and y encapsulated inside the object
LSobject while having AnotherA and Anothery encapsulated inside
the object AnotherLSobject reduces the likelihood that we mix up A and
y with AnotherA and Anothery. There are less things to remember. This
advantage is minimal in this problem with two attributes and one method.
However, it is not difficult to appreciate the advantage of this frame of mind
when we have classes with large numbers of attributes and methods. This
is particularly advantageous when we want to modify code an old piece of
code or when we want to share code with other developers.

In any event, discussing the relative merits of using object oriented pro-
gramming is outside of scope for us. The main reason for us to use it is that
it is customary in data sciences and we will follow custom.

4 Inheritance

A third concept of object oriented programming we have to introduce is
inheritance. This is the possibility of defining a “child” class that inherits
methods from a “parent” class. As an example, suppose that we intend to
create several random Gaussian least squares problems. Thus, instead of
generating several matrices and vectors to pass as arguments in the creation
of several different objects, it is more convenient to encapsulate the gen-
eration of the Gaussian matrix and vector inside of an object. To do that,



create a class GaussianLeastSquares which we define as a child of the
LeastSquares class,

class GaussianleastSquares (LeastSquares) :

def _ init_ (self, m, n):
self.A = np.random.normal (0, 1, size=(n, m))
self.y = np.random.normal (0, 1, size=(n, m))

The specification of theclass GaussianLeastSquares as a child of the
class LeastSquares is done by making the latter an argument in the
class statement. The use of inheritance allows us to reuse our hard work
in the creation of the LeastSquares class. We do not need to specify the
solve function for the GaussianLeastSquares because we are reusing
from the parent class LeastSquares. We are inheriting, to use the more
technical term. If at some point in the future we update the solve method
in the LeastSquares class, that updated method is automatically inher-
ited by the child class.

With this new class, the creation of least squares problem with a random
matrix and vector simplifies to the code

m = 13
n = 3
LSobject = GaussianLeastSquares (m,n)

The code for the evaluation of the solution of the least squares problem is
still the same because it has been inherited.

The most important advantage of defining a new class is that modifications
to the class will now propagate to all the places where a Gaussian least
squares problem is defined. If at some point in the future we decide that
variance 2 is more appropriate, it’s just a matter of changing the defini-
tion of the GaussianLeastSquares.__init__ method. The change will
propagate to all the places where we instantiate an object belonging to the
GaussianLeastSquares class.



5 Code Links

The code described here can be downloaded from the folder oop_python.zip.
This folder contains the following three files:

least_squares.py: The class LeastSquares and the child class
GaussianLeastSquares are specified in this file. This is where
the important code is written, but the file itself does not perform any
computation. The other two files are the ones that are executable.

least_squaresmain.py: This file instantiates an object of the class
LeastSquares and executes the solve method. The matrix A and

the vectors y and x are printed.

gaussian_least_squares_.main.py: This files instantiates an ob-
ject of the class GaussianLeastSquares and executes the solve
method inherited from the parent class. We print the matrix A and

the vectors y and x.


https://ese224.seas.upenn.edu/wp-content/uploads/2021/01/oop_python.zip

	Least Squares
	Classes: Attributes and Methods
	Objects: Concrete Instances of Abstract Classes
	Inheritance
	Code Links

