
The Discrete Cosine Transform and JPEG

Alec Koppel, Mark Eisen, Alejandro Ribeiro

March 10, 2021

For image processing applications, it is useful to consider the Discrete
Cosine Transform (2D DCT) instead of the 2D DFT due to its superior
empirical performance for signal compression and reconstruction tasks.
We first introduce the two-dimensional discrete cosine Ckl(m, n) of fre-
quencies k, l defined as

Ckl,MN(m, n) = cos
[

kπ

2M
(2m + 1)

]
cos

[
lπ
2N

(2n + 1)
]

. (1)

Then the two-dimensional DCT of a signal x is given by substituting
Ckl,MN into the expression for the two-dimensional DFT, which, after in-
troducing normalization constants as shown in lecture, yields

XC(k, l) :=
2√
MN

M−1

∑
m=0

N−1

∑
n=0

x(m, n)c1c2 cos
[

kπ

2M
(2m + 1)

]
cos

[
lπ
2N

(2n + 1)
]

=
2√
MN
〈x, c1c2Ckl,MN〉. (2)

where c1 = 1√
2

for k = 0 and c1 = 1 for k = 1, . . . , M − 1 and c2 = 1√
2

for l = 0 and c2 = 1 for l = 1, . . . , N − 1. Note that again this may
be computed as an inner product in two dimensions, just like the 2D
DFT. Crucial to the theory of image reconstruction and compression is
the 2D inverse Discrete Cosine Transform (2D iDCT), which is the signal
x̃C defined as

x̃C(m, n) :=
2√
MN

M−1

∑
k=0

N−1

∑
l=0

XC(k, l)c1c2 cos
[

mπ(2k + 1)
2M

]
cos

[
nπ(2l + 1)

2N

]
(3)

where c1 = 1√
2

for m = 0 and c1 = 1 for m = 1, . . . , M− 1 and c2 = 1√
2

for
n = 0 and c2 = 1 for n = 1, . . . , N − 1. Analogous to the 2D DFT, we note

1

that the sum in (3) allows us to represent an arbitrary two-dimensional
signal as a sum of cosines, and hence we may ask how many cosines are
necessary to represent the signal well in terms of reconstruction error.
We explore this question in the first part of this lab. Henceforth you may
assume that M = N, so that signals are of dimension N2.

1 Image Compression

1.1 DCT in Two Dimensions
1.1 DCT in Two Dimensions. Write down a Python class which takes as
input a two-dimensional signal of size N2 and computes its two-dimensional
DCT defined in (2).

1.2 Image Compression
1.2 Image Compression. When the signal dimension N2 is very large, it
is difficult to represent it well across its entire domain using the same DFT
or DCT coefficients. This is because the computation of the inverse in (3)
uses the same DFT or DCT coefficients across the entire domain. In Lab
3 Part 2, we designed an audio compression scheme by partitioning the
signal and computing the DFT of each piece so that our DFT coefficients
only needed to locally represent the signal over a small domain. We will
implement a two-dimensional analogue here.

Hence, write a Python class that takes in a signal (image) of size N2

and partitions it into patches of size 8× 8, and for each patch stores the
K largest DFT coefficients and their associated frequencies. We still want
the patch to be 8× 8 so set the other 64− K coefficients to zero. Your
partitioning scheme should resemble the depiction below.

Write another Python class that executes this procedure for the two
dimensional DCT. Try both of these functions out on the provided sample
image A for K = 4, 8, 16, 32. Make sure to keep track of each patch’s
frequencies associated with the dominant DCT coefficients. (Hint: See
Python function matplotlib.pyplot.imshow.)

2

1.3 Quantization
1.3 Quantization. A rudimentary version of the JPEG compression scheme
for images includes partitioning the image into patches, performing the
two-dimensional DCT on each patch, and then rounding (or quantizing)
the associated DCT coefficients. We describe this procedure below:

1. Extract a 8× 8 block of the image xij where (i, j) denotes the location
of the first pixel of your batch. (Hint: It is useful to keep track of
these indices.)

2. Perform the DCT of your 8 × 8 block xij. Store the DCT in Xij,
which is another block of 8 × 8, Xij(k, l), k, l ∈ {1, . . . , 8} (or any
other consecutive set of 8 integers you decide to use as frequencies).

3. Then quantize the DCT coefficients:

X̂ij(k, l) = round
[Xij(k, l)

Q(k, l)

]
(4)

Q(k, l) is a quantization coefficient used to control how much the (k, l)th
frequency is quantized. Since human vision is not sensitive to these
“rounding” errors, this is where the compression takes place. That is, a
smaller set of pixel values requires less bits to represent in a computer.

The standard JPEG quantization matrix that you should apply to each
patch is based upon the way your eye observes luminance, and is given
as

QL =

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 36 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

(5)

Write a function that executes the above procedure. If your code is
running too slowly, try using Python’s built-in functions.

1.4 Image Reconstruction
1.4 Image Reconstruction. Write down a Python class that takes in the
compression scheme in question 1.2, computes the iDCT of each patch,
and then stitches these reconstructed patches together to form the global
reconstructed signal. Write another Python class that executes this proce-
dure for the the quantized DCT coefficients from question 1.3.

3

Run these classes with the results of questions 1.2 and 1.3 as your in-
puts. That is, you should have one class that takes the patch-wise iDCT
of your compressed image, and one class that ”un-quantizes” your quan-
tized DCT coefficients, then takes the patch-wise iDCT of the result. We
define the reconstruction error, ρK as follows,

ρK = ||x− x̂K|| (6)

where x̂K is a reconstructed signal with K coefficients. Plot the recon-
struction error ρK versus K for your code from questions 1.2. What do
you observe? Are you able to discern what is in the original image?

Play around with the quantization matrix. Do higher or lower val-
ues of Q(k, l) yield better reconstruction performance? How much can
you alter the entries Q(k, l) and still obtain a compression for which the
original image is discernible to your eye?

4

	Image Compression
	DCT in Two Dimensions
	Image Compression
	Quantization
	Image Reconstruction

