
Face Recognition

Aryan Mokhtari, Santiago Paternain, and Alejandro Ribeiro

April 1, 2021

The goal of this lab is to implement face recognition using Principal
Component Analysis (PCA). One of the most important applications of
the PCA is mapping a dataset into a new space with smaller dimension in
a way that minimizes the reconstruction error. Dimensionality reduction
is specially useful for datasets in which the dimension of each sample
points is large. So if we consider a dataset D := {x1, . . . , xM}, where each
sample point xi has dimension N, we want to map these signals into a
space of dimension k with k � N. To do so, let us first recap the idea of
PCA.

1 Principal Component Analysis

In PCA, we define a new unitary matrix based on the eigenvectors of
the covariance matrix of a dataset. Before discussing covariance matrices,
though, we need to the define the signal average.

Definition 1 Let x1, x2, ...xM be M different vectorized points in a dataset.
Then, we can define the average signal as

x̄ =
1
M

M

∑
m=1

xm. (1)

Notice that this is simply the definition of the sample mean. We next
define the empirical covariance matrix.

Definition 2 (Covariance matrix) Let x1, x2, ...xM be M different points in a
dataset. Then, their empirical covariance matrix is

Σ =
1
M

M

∑
m=1

(xm − x̄)(xm − x̄)T , (2)

1



for x̄ as in (1).

We can define the PCA transformation by using eigenvectors of the
empirical covariance matrix (2). Indeed, let v0, v1, · · · , vN−1 be the eigen-
vectors of (2) that correspond to the eigenvalues λ0, . . . , λN−1 respectively.
We assume that the eigenvalues are ordered, i.e., λ0 ≥ λ1 ≥ · · · ≥ λN−1.
Then, as for the Discrete Fourier transform, define the unitary matrix

T =
[
v0 v1 · · · vN−1

]
∈ RN×N (3)

where the i-th column is the i-th eigenvector of the empirical covariance
matrix. The PCA transform is then written as a product between the
matrix TH and the centered signal, i.e.,

xPCA
i = TH (xi − x̄) for i = 1, . . . , M, (4)

where xi and x̄ are N × 1 vectors. Just as with the DFT and the DCT,
we can also define the inverse operation to PCA transform which gives
us the signal xi based on the coefficients xPCA

i . Since the transformation
in (3) is unitary, the inverse transformation is given by T, i.e.,

x̃i = TxPCA
i + x̄. (5)

Using the fact that T is unitary (TTH = I), you should be able to quickly
prove that xi = x̃i, i.e., that (3) and (5) indeed “undo” each other.

2 Dimension reduction

When using the DFT and the DCT to compress signals, we kept the coef-
ficients with the largest magnitude and supposed all others are zeros. In
PCA, we do use a similar idea, but keep the coefficients that correspond to
the eigenvectors with largest eigenvalues. In other words, we do not look
at the values of xPCA

i and instead rely on the eigenvalues λ0, . . . , λN−1.
This scheme can be implemented by defining another PCA transform
matrix:

T̃k =
[
v0 v1 · · · vk−1

]
∈ RN×k. (6)

As you can see we use only the eigenvectors that correspond to the k
largest eigenvalues to create T̃k. The PCA coefficients of the signals are
now given by

xPCAk
i = T̃H

k (xi − x̄) for i = 1, . . . , M. (7)

2



Notice that xPCAk
i is a vector of dimension k < N. Also, observe that (7) is

equivalent to performing a full PCA as in (4) and then discarding all but
the first k elements of xPCA

i . However, (7) is a more efficient way of doing
it.

The inverse transformation of (7) is given by

x̃PCAk
i = T̃kxPCAk

i + x̄. (8)

Naturally, as with the DFT and the DCT, the reconstruction error is not
zero when we compress the signal. In other words, x̃PCAk

i 6= xi.

3 Face Recognition

In face recognition, we have access to a dataset called the training set
which contains pictures of faces labeled with people’s names or IDs. In
this lab, the label of each image is an integer number that identifies the
person in the image. The goal of face recognition is assigning labels (in-
tegers) to a set of signals (images) for which we do not have labels. We
call this set the test set. Different techniques can be used to perform this
classification task and in this lab we will use the nearest neighbor method.

Consider a training set Dtraining := {x1, . . . , xM} where their labels are
{y1, . . . , yM}. Further, consider Dtest := {x̂1, . . . , x̂P} to be a test set for
which the labels are not given. To determine the label of a sample point x̂i,
we use the nearest neighbor method. However, instead of using it directly
on the images, we will apply the method to their PCA transforms. Hence,
let Σtraining be the covariance matrix of the training set

Σtraining =
1
M

M

∑
m=1

(xm − x̄training)(xm − x̄training)
T , (9)

where x̄training is the average image of the training set. Consider the eigen-
vectors v0, . . . , vk−1 relative to the k largest eigenvalues of the training
covariance matrix Σtraining and define the PCA transformation

T̃k =
[
v0 v1 · · · vk−1

]
∈ RN×k. (10)

Recall that k represents the “size” of the transform, i.e., the number of
PCA coefficients we keep (i.e., k ≤ N).

Using (10), we can project the training points xi ∈ Dtraining into the
space of the first k principal components using

xPCAk
i = T̃H

k
(
xi − x̄training

)
, for xi ∈ Dtraining. (11)

3



The coefficients of each training images xPCAk
i form the transformed train-

ing set DPCAk
training. We repeat this process for the images in the test set Dtest

to obtain

x̂PCAk
i = T̃H

k
(
x̂i − x̄training

)
, for x̂i ∈ Dtest. (12)

Once again, the transformed images x̂PCAk
i are collected to create the

transformed test set DPCAk

test .
We can now run the nearest neighbor algorithm on the transformed

training and test sets. Explicitly,

x?j = argmin
x

PCAk
i ∈DPCAk

training

∥∥∥x̂PCAk
j − xPCAk

i

∥∥∥2
, x̂PCAk

j ∈ DPCAk
test (13)

Note that x?j is the closest neighbor in the training set of the transformed

test point x̂PCAk
j . We can therefore simply assign the label yj of image x?j

from the training set to the test image x̂j.

4 Creating training and test sets

For this lab we use the dataset provided by the AT&T Laboratories Cam-
bridge. The images of this dataset are shown in Fig. 1. This dataset
is comprised of 10 images for each of 40 different people. The images
are 112× 92 pixel with 8-bit grey levels provided in .pgm format (Portable
GrayMap). They are organized in 40 folders (one for each person) named
sX, where X is a number between 1 and 40 that identifies each individual.
Inside each folder, you will find 10 different images of the selected person
named as Y.pgm, where Y is a number between 1 and 10. We will assign
some of the images to the training set and use the rest as the test set in
our face recognition experiments.

4



Figure 1. Images of AT&T Laboratories Cambridge dataset.

4.1 Generating training and test sets
4.1 Generating training and test sets. Write a class that creates two ma-
trices, Xtrain and Xtest, whose columns represent the data points for the
training and test sets respectively. In other words, each column of Xtrain
and Xtest represents one image from the dataset. For each person, as-
sign the first nine pictures to the training set and the last picture to
the test set. In other words, your class must open each folder, load
the first nine images, vectorize them, and save them into Xtrain; then,
open the last image, vectorize it, and save it into Xtest. Since the images
are 112× 92 pixels, their vector representation is 10304× 1. Hence, Xtrain
is a 10304× 360 and Xtest is 10304× 40. (Hint: See Python built in function
matplotlib.pyplot.imread)

5



5 PCA on the training and test sets

In this section we use PCA to reduce the dimensionality of the training
samples (i.e., Xtrain). We also map the samples in the test set into the
principal components’ space of training set.

5.1 PCA transform of training points
5.1 PCA transform of training points. Write a Python class that given
the number of principal components k and the training matrix Xtrain, re-
turns (i) the k × 360 PCA transformed training matrix XPCAk

train ; (ii) the k-
PCA transform matrix T̃k from (7), which contains the eigenvectors corre-
sponding to k largest eigenvalues of the empirical covariance matrix; and
(iii) the mean vector x̄. Notice that the dimension of “eigenfaces matrix”
T̃k should be 10304 × k. Also recall that the eigenvectors in XPCAk

train are
derived from the covariance matrix of the training set Σtraining. Run this
function with the training matrix Xtrain from Part 4.1 for k = 1, 5, 10, 20.
Notice that since there are four different choices for the number of prin-
cipal components, we expect four different transformed training matri-
ces XPCAk

train and four different eigenfaces matrices T̃k.

5.2 PCA transform of test point
5.2 PCA transform of test point. Write a Python class that given the test
matrix Xtest, the mean vector x̄, and the eigenfaces matrix T̃k, returns the
PCA transform of the test set XPCAk

test . Use this function to obtain the PCA
coefficients for Xtest from Part 4.1 for k = 1, 5, 10, 20. The outcome of this
section should be four different transformed test matrices XPCAk

test of sizes
1× 40, 5× 40, 10× 40, and 20× 40.

6 Nearest neighbor classification

Consider that we have an image from the test set. Our goal is to find the
image in the training set which is the most similar to the test image. To
classify the closest image we use the nearest neighbor algorithm.

6.1 Nearest Neighbor class
6.1 Nearest Neighbor class. Define a Python class that takes the trans-
formed training set XPCAk

train and the transformed test set XPCAk
test and returns

for each test sample, the index of the training sample closest to it. In
other words, for each column of XPCAk

test , it finds the index of the column
in XPCAk

train that is closest to it. Formally, let [M]i denote the i-th column of

6



the matrix M. Then,

y?j = argmin
i=1,...,N

∥∥∥∥[XPCAk
test

]
j
−
[
XPCAk

train

]
i

∥∥∥∥2
, j = 1, . . . , P, (14)

Display some of the images in the test set and their nearest neighbors for
different choices of k.

7


	Principal Component Analysis
	Dimension reduction
	Face Recognition
	Creating training and test sets
	Generating training and test sets

	PCA on the training and test sets
	PCA transform of training points
	PCA transform of test point

	Nearest neighbor classification
	Nearest Neighbor class


