
Signal Processing on Graphs –
Classification of Cancer Types

Weiyu Huang, Santiago Segarra, and Alejandro Ribeiro

April 20, 2021

Last week, we studied graph signal processing, which defines the con-
cept of frequency and Fourier transform for signals supported on graph-
s. We observed that the traditional finite discrete time signal processing
can be viewed as a particular case of the graph signal processing when
the graph considered is a directed cycle. We also studied that the PCA
transform can be understood as a graph Fourier transform when the un-
derlying graph is given by the covariance matrix. In this week’s lab, we
are going to complete our ESE 224 journey with an application of graph
signal processing to improve the classification of cancer types through the
use of genetic networks.

1 Review of graph theory and graph filters

Formally, a graph is a triplet G = (V , E , W) where V = {1, 2, . . . , N} is a
finite set of N nodes or vertices, E ⊆ V × V is a set of edges defined as
order pairs (n, m) and W : E → R is a map from the set of edges to scalar
values wnm. Weights wnm represent the similarity or level of relationship
from node n to node m. The adjacency matrix A ∈ RN×N of a graph is
defined as

Amn =

{
wnm, if (n, m) ∈ E
0, otherwise.

(1)

In unweighted graphs, Amn is either 1—if nodes n and m are connected—
or 0. For undirected graphs, the adjacency matrix is symmetric, i.e., wnm =
wmn for all nodes n and m. When this is not the case, we say that the
graph is directed. We will only deal with undirected graphs from now
on.

1

Graph signals are mappings x : V → R from the vertices of the graph
into the real numbers. Graph signals can be represented as vectors x ∈
RN where xn stores the signal value at the nth vertex in V . Notice that
this assumes an indexing of the nodes, which coincides with the indexing
used in the adjacency matrix.

The degree of a node is the sum of the weights of the edges incident
to that node. Formally, the degree of node i is defined as

deg(i) = ∑
j∈N (i)

wij, (2)

where N (i) stands for the neighborhood of node i, i.e., all other nodes
connected to node i. The degree matrix D ∈ RN×N is a diagonal matrix
such that Dii = deg(i). Given an undirected graph G with adjacency
matrix A and degree matrix D, we define the Laplacian matrix L ∈ RN×N

as
L = D−A. (3)

For an arbitrary undirected graph G = (V , E , W), a graph-shift opera-
tor S ∈ RN×N is a matrix satisfying Sij = 0 for i 6= j and (j, i) 6∈ E . Since
the graph is undirected, the graph-shift operator can be decomposed in-
to S = VΛVH . Then, the Graph Fourier Transform (GFT) of x is defined
as

x̃(k) = 〈x, vk〉 =
N

∑
n=1

x(n)v∗k (n). (4)

Equation (4) can be rewritten in matrix form to obtain

x̃ = VHx. (5)

Since the columns of V are the eigenvectors vk of S, x̃(k) = vH
k x, i.e.,

the inner product between vk and x. We think of the eigenvectors vk as
oscillation modes associated to the eigenvalues in the same way that, in
discrete time signal processing, different complex exponentials are asso-
ciated to frequency values. In particular, GFT is equivalent to DFT when
V = F, i.e. vk = ekN , the complex exponential vector.

In order to measure how much a signal oscillates within a graph, the
concept of total variation can be extended from traditional signal pro-
cessing. Classically, the total variation of a signal is defined as the sum of
squared differences in consecutive signal samples, ∑n (xn − xn−1)

2. This
concept can be extended to graphs where the notion of neighborhood

2

replaces that of consecutive nodes to obtain

TVG(x) =
N

∑
n=1

∑
m∈N (n)

(xn − xm)
2 wmn = xTLx. (6)

As can be seen from (6) the total variation of a signal in a graph can be
written as a quadratic form of the Laplacian of that graph. Total variation
allows us to interpret the ordering of the eigenvalues of the Laplacian
in terms of frequencies, i.e., larger eigenvalues correspond to higher fre-
quencies (larger total variation). The eigenvectors associated with large
eigenvalues oscillate rapidly whereas the eigenvectors associated with s-
mall eigenvalues vary slowly.

The inverse graph Fourier transform (iGFT) of a graph signal x̃ ∈ RN

is given by

x(n) =
N−1

∑
k=0

x̃(k)vk(n), (7)

which can be rewritten in matrix form as

x = Vx̃. (8)

The orthonormality of the vk, i.e., V is unitary, ensures that indeed the
GFT and iGFT are inverse operations. Orthonormality also allows the
extension of other classical results to the graph domain, e.g., Parseval’s
theorem.

Given a graph signal x with its GFT x̃, we can filter the graph signal
by passing it through a filter H. In frequency domain, the filtered GFT is
the multiplication of the original GFT x̃ with the frequency response of
the filter given by H̃, i.e.,

ỹ = diag(H̃)x̃. (9)

And the filtered signal in the graph domain x̂ can be recovered by per-
forming inverse GFT onto the filtered GFT,

y = Vỹ. (10)

2 Genetic network

Let us begin by analyzing the genetic network describing gene-to-gene
interactions. The network was downloaded from the NCI Nature database

3

(link: http://pid.nci.nih.gov/download.shtml). You can get it from the
ESE 224 website. The network consists of 2458 genes and loosely speak-
ing, two genes are connected if the proteins encoded by them participate
in the same metabolism process.

2.1 Understanding the data
2.1 Understanding the data. Load the file geneNetwork rawPCNCI.mat.
You will see the gene network A ∈ R2458×2458. This is our adjacency ma-
trix for the following analysis. Does this graph contains self-loops? Is the
graph directed or undirected, weighted or unweighted? (Hint: think of
what the adjacency matrix of these graphs would look like). For graph-
s possessing this many nodes, it would be very useful to visualize the
graph to get a sense of how does the graph looks like. Load the mat file
using the scipy.io.loadmat() in Python. Plot the graph using the
matplotlib.pylab.spy() in Python.

Construct L the Laplacian of the loaded adjacency matrix A. Sup-
pose we define another adjacency matrix Â by removing all self-loops
from A (making the diagonal elements 0). Is L̂, the Laplacian of Â, dif-
ferent from L? Explain why.

2.2 Total variations
2.2 Total variations. For the graph shift operator S = L, perform an
eigendecomposition and find its eigenvectors. Compute the total varia-
tion TVG(vk) for each of its eigenvectors vk using (6). Plot the total vari-
ations for all eigenvectors versus their corresponding eigenvalues. What
can you say about this? Recall that the total variation of a signal quan-
tifies how much a signal oscillates on a graph. What does your finding
imply about the ordering of frequencies, i.e. do eigenvectors associated
with larger eigenvalues oscillate faster or slower?

3 Genetic profiles

In this section, we are going to study the genetic profiles of 240 patients
diagnosed with different subtypes of ovarian cancer. We will see that by
interpreting these genetic profiles as graph signals defined on the genetic
networks, we will be able to clearly distinguish patients from different
subtypes.

Load the file signal mutation.mat. You will see the aggregated graph
signals X ∈ R240×2458. The i-th row of this matrix represents the genetic
profile xi for the i-th patient. The n-th gene for this patient is mutated if
the n-th entry of xi is 1 and is not mutated (normal) if the n-th entry is 0.

4

Patients diagnosed with the same disease may exhibit different phe-
notypes, i.e., different variations of the same disease. The most effective
therapies for different phenotypes may differ a lot and, for this reason,
it is very beneficial if we can distinguish phenotypes based on the genet-
ic profiles. Load the file histology subtype.mat and you will see a vector
y ∈ R240 that describes the patients phenotypes. The i-th element is 1
if patient i has serous subtype ovarian cancer and 2 if the patient has
endometrioid subtype ovarian cancer. Our goal is to better differentiate
between patients with these two subtypes based on graph Fourier analy-
sis.

3.1 Distinguishing power
3.1 Distinguishing power. Take the graph-shift operator to be the Lapla-
cian S = L = VΛVH . We want to find the oscillation modes vk such that
the corresponding Graph Fourier Transform coefficient x̃(k) differs the
most between patients with serous subtype and endometrioid subtype.
There are many ways to do this, and we consider the following simple
heuristic. First compute the GFTs x̃i = VHxi for all patients. Then for
each mode k, define the distinguishing power of vk as

DP(vk) =

∣∣∣∣∣ ∑i:yi=1 x̃i(k)

∑i 1 {yi = 1} −
∑i:yi=2 x̃i(k)

∑i 1 {yi = 2}

∣∣∣∣∣ / ∑
i
|x̃i(k)| , (11)

where 1 is the indicator function defined as

1{A} =
{

1, if A is true;
0, otherwise.

(12)

In words, DP(vk) computes the normalized difference between the mean
GFT coefficient for vk among patients with serous subtype and the mean
GFT coefficient among patients with endometrioid subtype. Generate a
plot of DP(vk) versus k for all frequency indices k.

3.2 Interpretation
3.2 Interpretation. To have a better sense about the distribution of dis-
tinguishing powers, generate a boxplot of DP(vk) for all k using the com-
mand matplotlib.pyplot.boxplot(). In the boxplot, the central
mark represents the median, the edges of the box are the 25th and 75th
percentiles, and the whiskers extend to the most extreme data points that
Python considers not to be outliers. The data points Python considers as
outliers are plotted individually. Combining this analysis with the plot
you generated, what can you say about the distribution of distinguishing
power? Oscillation modes with high DP contain distinguishing features

5

of the two subtypes and oscillation modes with low DP hardly contain
useful information. In the following section, we will design a graph filter
in order to improve classification accuracy of cancer subtypes. Follow-
ing the study of ESE224 this semester, what’s your best guess about the
characteristics of reasonable graph filters?

4 Improving classifications using graph filter

We have applied k-Nearest Neighbors (k-NN) classifications a couple of
times so far in the course and we will utilize it again in the cancer sub-
type classification. We will describe the particular k-NN algorithm we
are going to use in this problem and introduce a few vectorized opera-
tion functions in Section 4.1 to accelerate the running time for the k-NN
algorithm. Then we will design a graph filter to improve classification
accuracy for cancer subtypes in Section 4.2.

4.1 k-NN for leave-one-out cross validation

We design the following procedure to test the improvement of filtered
graph signals Xf as compared to the original signals X. In short, we
perform leave-one-out cross validation for a k nearest neighbors (k-NN)
classifier. More precisely,

(1) compute the pairwise Euclidean distance between all pairs of patients
using the original graph signals X

(2) for each patient p = 1, . . . , 240, compare the most common histology
of its k nearest neighbors to its actual diagnosis obtained from y

(3) compute the accuracy of the classifier by aggregating all comparisons
in (2)

We will also repeat this process for the filtered graph signals Xf.
Write a Python class that given a matrix of graph signals (either X

or Xf), the vector representing subtypes of patients y, and the number of
neighbors to be considered k, computes the global classification accuracy.
Run this class for the original graph signals and k = 3, 5, 7, report your
accuracies.

Here are some tips to write a fast vectorized leave-one-out cross validation
algorithm, given arbitrary graph signals Z. In computing the pairwise distance
between pairs of patients, we can use

6

import scipy.spatial.distance as ssd
d = ssd.squareform(ssd.pdist(Z, ’euclidean’))

where ssd.pdist(·, ’euclidean’) outputs a vector containing the distances
between each pair of observations in Z and ssd.squareform() converts this
vector into the matrix form.

For leave-one-out cross validation, given the matrix d representing the pair-
wise distance, we can select the nearest neighbors using the following trick. Start
with nn = d.argsort(axis=0), whose output is a matrix with the i-th colum-
n representing the patient indices ordered from the most similar patient to patient
i to most dissimilar. Since the distance from a patient to themselves is always 0,
the closest patient to any patient is themselves. Hence, the command nn label

= y[nn[1:(k+1), :]] gives us the labels of the k nearest neighbors for all
patients. In nn label, the i-th column represents the labels of the k closest pa-
tients to patient i. Finally, using statistics.mode() along the right dimension
yields the prediction results from the k-NN classifier. Comparing the results with
the actual label y gives the accuracy.

4.2 Graph filters

We consider the following two graph filters to improve the classification
accuracy results we computed in the previous section. The first graph
filter keeps only the information conveyed in the oscillation mode that
is most distinguishable for two subtypes. To be more specific, for the
genetic profile xi of patient i, its GFT x̃i is fed into a graph filter H̃1 with
the following frequency response,

H̃1(k) =

{
1, if k = argmaxk DP(vk)

0, otherwise.
(13)

Denote the filtered GFT as x̃ f
i and its inverse GFT as x f

i . We can then
form a filtered graph signal matrix with each of its rows representing the
filtered genetic profile of each patient. Run the k-NN classifier you wrote
in 4.1 with this filtered graph signal matrix and report your accuracies
for k = 3, 5, 7. Compare the results with those obtained for the original
graph signals. What do you observe?

We can consider a more general graph filter H̃p with the following
frequency response,

H̃p(k) =

{
1, if DP(vk) ≥ p-th percentile of the distribution of DP
0, otherwise,

(14)

7

where p is any real number between 0 and 100. In words, this family of
graph filters keep the information conveyed in oscillation modes that are
distinguishable for two subtypes to some extent. The p here is chosen to
select the number of oscillation modes. Run the k-NN classifier you wrote
in 4.1 with the graph signal fed into this graph filter with your choice of
p such that the classification error is much smaller than the classification
error using the original graph signals. Report your accuracies for k =
3, 5, 7 and p = 0.75, 0.8, 0.85, 0.9, 0.95.

8

	Review of graph theory and graph filters
	Genetic network
	Understanding the data
	Total variations

	Genetic profiles
	Distinguishing power
	Interpretation

	Improving classifications using graph filter
	k-NN for leave-one-out cross validation
	Graph filters

